

The Third Dimension of GIS and LADM – Current Status and Perspectives

Alias Abdul Rahman, Ainn Zamzuri, Hanis Rashidan & Wahyu Marta Mutiarasari

3D GIS Research Lab Faculty Built Environment & Surveying, Universiti Teknologi Malaysia

www.utm.my

Contents

- Introduction
- 3D GIS
- Data Fusion for 3D Models
- Semantic Segmentation of 3D Models
- The 3D LADM
- Final remarks

- The literature shows that the development and research expanded from basic in 1990's to more advanced today.
- Among the first ideas were by Pilouk (1996), Zlatanova (1998) and Abdul-Rahman (2000).
- Introduced data structures for 3D spatial objects modelling.

- The data structures and data model able to accommodate 3D objects.
- Then, the data modelling, processing, database, and 3D visualization.
- Recently on new 3D data exchange formats (CityGML, CityJSON, Interlis) trigger various processing modules – record and indexing and searching mechanism within database with 3D visualization e.g. Cesium.

- 3D city models via CityGML ver. 2 and ver. 3
- Then enhanced 3D city models as part of Digital Twins development.
- E.g. Munich and Rotterdam.

C. Nagel (2018)

www.utm.my

C. Nagel (2018)

www.utm.my

C. Nagel (2018)

www.utm.my

Export

Object selection Area selection

Please define an area by selecting at least three points in the map.

Email address

Please provide an email address. You will receive a download url when the process is finished.

-Modelsettings		_
Export format	2D Shape	•
LoD level: Thematic classes (Select several by pressing the CTRL-Key) Send request Reset	2D Shape 3D Shape - PolygonZ 3D Shape - Multipatch CityGML KMZ DXF DWG 3DS ESRI FGDB SketchUp	

Helsinki 3D+

www.utm.my

C. Nagel (2018)

Gerealiseerd door FutureInsight BV in samenwerking met virtua

innovative • entrepreneurial • global

www.utm.my

www.utm.my

3D data fusion

- 3D buildings generation via fusion method comes with low accuracy; however, recent research utilizing point cloud data and Laplacian improves accuracy.
- A key challenge of data fusion is to develop effective data integration methods of different datasets.

3D data fusion

- Development of 3D building models and applications as illustrated.
 - Spatial data acquisition
 - 3D fused building models
 - 3D building models
 - 3D city models
 - Application of 3D city models

3D data fusion

- **3D fused building models** are generated by using several datasets.
 - Terrestrial laser scanning
 - Airborne laser scanning
 - Drone photogrammetry
- The datasets are integrated and enhanced into a more complete
 3D building models through a process of data fusion.
- For urban environments, 3D building models can be developed into **3D city models** and **3D LA** applications.

www.utm.my

Semantic Segmentation of 3D Models

- Semantic Segmentation (technique)
 - Identify objects (building elements) through classification and labeling.

• 3D Urban Environment (application)

- Enables detailed analysis and visualization of urban spaces.
- Aids in infrastructure maintenance and management.

• CityGML (standard)

- Embeds semantic information, enhancing data utility.
- Supports multi-scale representations, from building components to entire city models.

www.utm.my

Semantic Segmentation of 3D Models

www.utm.my

Semantic Segmentation of 3D Models

4. THE OUTCOME

The CityGML building models with semantic information.

www.utm.my

The 3D LADM

- Edition I Focus on Part 2: Land Registration (Main Packages - Party, Administrative, Spatial Unit)
- Edition II (Part 3: Marine Georegulation, Part 4: Valuation Information, Part 5: Spatial Planning)
- LADM adoption approximately 35% of the countries involved
- Adoption purposes standardized data exchange, comprehensive land administration, 2D and 3D representation, linking to source document (e.g., BIM/IFC, CityGML)

The 3D LADM

- Standardization ensuring consistency various systems
- Interoperability facilitates data exchange
- Data quality reduces inconsistencies
- Flexibility allowing for the inclusion of additional attributes
- Support for Sustainable Development promotes SDGs

The LADM

www.utm.my

LADM for 3D

 3D LA system shows physical and legal information (Mao, P., 2024)

www.utm.my

Final remarks

Visualizing virtual 3D city models via CityGML database

CityGML database and visualization architecture. (Courtesy of 3D City DB)

CityGML City of Berlin

www.utm.my

Final remarks

- The development of 3D geoinformation encompassing 3D GIS, 3D data fusion, semantic modeling, and 3D LADM – is highly linked with computing, mathematics, databases, and visualization (both web and desktop platforms).
- Significant advancements in techniques, processing, computing tools, algorithms, and data exchange standards significantly improved 3D geoinformation and LADM.

Thank you!

www.utm.my