

National University of Singapore

Research Insights and Perspectives of Urban Digital IWINS

Filip Biljecki **Assistant Professor** National University of Singapore **Urban Analytics Lab**

This mosaic was formed using 5,720 street view images contributed by Mapillary and KartaView users

urban analytics Jab

Research strands

Buildings / 3D GIS / DT

Street view imagery

Some of our open-source software / open data

Global Building Morphology Indicators; Roofpedia; Urbanity

Buildings / 3D GIS / DT

Street view imagery

Global Building Morphology Indicators; Roofpedia; Urbanity

Data acquisition, Data quality, Data harmonisation

Buildings / 3D GIS / DT

Street view imagery

Global Building Morphology Indicators; Roofpedia; Urbanity

Change detection with SVI Research by Xiucheng Liang & Zeyu Wang

Physical measures

Perceptual measures

Overall

Imagery source: Google Street View

Street view imagery

Global Building Morphology Indicators; Roofpedia; Urbanity

Street view imagery

Some of our open-source software / open data

Global Building Morphology Indicators; Roofpedia; Urbanity

Roofpedia Global open registry of roofs for urban sustainability

Roofpedia Global open registry of roofs for urban sustainability

Published in Landscape and Urban Planning. Credit: Abraham Noah Wu

by Abraham Noah Wu

ROOFPEDIA

Automated Roof Mapping + Geospatial Roof Registry + Sustainable Roof Index

Automated Classification

Convolutional Neural Network

Rooftop Solar Panels

Satellite Images

Solar Roofs

Roofpedia Registry

Roofpedia Indices

Zurich

Solar Roof Index	
Las Vegas	86
Zurich	81
Singapore	75
Phoenix	75
Melbourne	74
Berlin	57
Copenhagen	45
New York	42
Paris	42
San Diego	24
Los Angeles	20
Seattle	13
San Jose	12
Portland	10
San Francisco	9
Luxembourg City	7
Vancouver	0

Green Roof Index

Zurich	100
Berlin	51
New York	28
Copenhagen	22
Paris	18
San Diego	14
San Jose	13
Phoenix	13
Melbourne	11
Las Vegas	9
Seattle	6
Los Angeles	6
Luxembourg City	4
Portland	3
San Francisco	2
Vancouver	0

Buildings / 3D GIS / DT

Street view imagery

Global Building Morphology Indicators; Roofpedia; Urbanity

https://sustainability.nus.edu.sg/campus-sustainability/coolnus/

What is a Digital Twin Anyway? Deriving the Definition for the Built Environment from over 15,000 Scientific Publications

Mahmoud Abdelrahman^a, Edgardo Macatulad^{a,b}, Binyu Lei^a, Matias Quintana^c, Clayton Miller^d, Filip Biljecki^{a,e,*}

^aDepartment of Architecture, National University of Singapore, 4 Architecture Drive, Singapore, 117566, Singapore ^bDepartment of Geodetic Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines ^cSingapore-ETH Centre, Future Cities Lab Global Programme, CREATE campus, #06-01 CREATE *Tower, Singapore, 138602, Singapore* ^dDepartment of the Built Environment, National University of Singapore, 4 Architecture Drive, Singapore, 117566, Singapore ^eDepartment of Real Estate, National University of Singapore, 15 Kent Ridge Dr, Singapore, 119245, Singapore

Definition predict various states and scenarios.

A City/Urban Digital Twin is a spatial-temporal virtual representation of a real-world urban area or city, mirroring its states during its lifecycle through IoT sensors. It is used to monitor and analyze urban systems across different time spans to aid in decision-making and can be extended to simulate and

Gaps & opportunities in digital twins

- Potential for integrating new data streams — wearables, crowdsourced data, dynamic data, street view imagery
- Human-centric DTs
- More use cases
- Lack of data to build and maintain them

Some recent efforts

- 1. Inferring information from real estate ads (crowdsourcing building data)
- 2. Integration of dynamic data / wearables / comfort information
- 3. Integration of perception (another human-centric focus)
- 4. Development of localised use cases

President' House Garden

Preston

Hedges Park Condominium

Condominium

Overview Home Finance Price Insights Location

S\$ 2,088,888 Negotiable

♡ Shortlist @ Hide A Share ↓ PDF Report Listing

4 ⊨ 4 ⇔ 1539 sqft s\$ 1,357.30 psf

Est. Repayment S\$ 5,791 /mo Get the best rates

Hedges Park Condominium

81 Flora Drive 506886 Changi Airport / Changi Village (D17)

Are real estate ads a type of user-generated geographic information that has been ignored in GIScience?

\bigcirc	\bigcirc	\bigcirc
a	Ø	\heartsuit
\bigcirc	\bigcirc	\bigcirc

♡ Shortlist 🔗 Share

Details

Property Type	Floor Size
Condominium For Sale	1539 sqft
Developer	PSF
Tripartite Developers Pte Limited	S\$ 1,357.30 p
Furnishing	Floor Level
Unfurnished	Ground Floor
Tenure	TOP
99-year Leasehold	June, 2015
Listing ID	Currently Tenant
24359099	No
Listed On	Maintenance Fe
32 seconds ago	S\$ 450.00 /me

Source: PropertyGuru

sf ted О

Introducing new means of acquisition of building data **By Xinyu Chen** Urban Informatics Paper of the Year Award (2023)

Chen and Biljecki Urban Informatics (2022) 1:12 https://doi.org/10.1007/s44212-022-00012-2

ORIGINAL ARTICLE

Mining real estate ads and property transactions for building and amenity data acquisition

Xinyu Chen¹ and Filip Biljecki^{2,3*}

Abstract

Acquiring spatial data of fine and dynamic urban features such as buildings remains challenging. This paper brings attention to real estate advertisements and property sales data as valuable and dynamic sources of geoinformation in the built environment, but unutilised in spatial data infrastructures. Given the wealth of information they hold and their user-generated nature, we put forward the idea of real estate data as an instance of implicit volunteered geographic information and bring attention to their spatial aspect, potentially alleviating the challenge of acquiring spatial data of fine and dynamic urban features. We develop a mechanism of facilitating continuous acquisition, maintenance, and quality assurance of building data and associated amenities from real estate data. The results of the experiments conducted in Singapore reveal that one month of property listings provides information on 7% of the national building stock and about half of the residential subset, e.g. age, type, and storeys, which are often not available in sources such as OpenStreetMap, potentially supporting applications such as 3D city modelling and energy simulations. The method may serve as a novel means to spatial data quality control as it detects missing amenities and maps future buildings, which are advertised and transacted before they are built, but it exhibits mixed results in

Open Access

Check for

Cozie - An iOS application for watch surveys and physiological data collection

Non-intrusive feedback in real-time

Download on the App Store

https://cozie-apple.app/ Jayathissa P, Quintana M, Abdelrahman M, Miller C. Humans-as-a-Sensor for Buildings—Intensive Longitudinal Indoor Comfort Models. Buildings. 10: 174, 2020. https://doi.org/10.3300/buildings1010017/

- Momentum in research on comfort in the built environment
- Comfort is more than thermal comfort
- Comfort is influenced by myriads of factors

Predicting Human Comfort on the Sidewalk

Liu P, Zhao T, Luo J, Lei B, Frei M, Miller C, and Biljecki F (2023): Towards Human-centric Digital Twins: Leveraging Computer Vision and Graph Models to Predict Outdoor Comfo

Fowards Human-centric Digital Twins: Leveraging Compute

Graph Models to Predict Outdoor Comfort gyuan Liu^a, Tianhong Zhao^{a,b}, Junije Luo^{a,c}, Binyu Lei^a, Mario Frei^a, Clayton Mille

ARTICLE INFO	ABSTRACT
Keywords: Spatial analysis Walkability Built environment Graph neural network Urban study	Conventional sidewalk studies focused on quantitative analysis of sidew cannot capture the dynamic interactions between the environment an idea of <i>Tech for Social Good</i> , Urban Digital Twins seek AI-empowered digitally-mediated technologies to enhance their prediction ability. W spatial artificial intelligence (GeoAI) framework on crowdsourced data a comfort on the sidewalks. Conceptualising the pedestrians and their in unbuilt environments as human-centric dynamic graphs, our model cag given by the sequential movements of human walking, enabling the Gra explicit. Our experiments suggest that the proposed model provides hig a traditional machine learning model and two state-of-art deep learn prediction power of Urban Digital Twin. The source code for the model

2007). In the urban

Goal of the work

view imagery / urban form data, etc. in an urban digital twin to support walkability/comfort studies

Proof of concept of integrating wearable data, weather information, street

BEAN 14.12.2023 - Demo

31-

Ō,

Thermal Walk Segmented Image

Urban Morphological Features

Percieved Thermal Comfort

Weather Station Temperatures (C)

Weather Station Solar Radiation (W/m2)

CLEMENTI WOODS

Terrain Sidewalk Road Vegetation Building Sky

×

Hot

Warm

Slightly Warm

Neutral

----- Globe T ----- Temperature

Aap contributors

Potential of the work / Why do we need this?

- Work in progress
- Understand drivers of comfort in the built environment
- Support walkability studies
- Predicting comfort at detailed resolution both spatially and temporally
- Human-centric aspect tailored models based on profiles and personal preferences

Evaluating Human Perception of Building Exteriors Using Street View Imagery — Xiucheng Liang, Jiat Hwee Chang, Song Gao, Tianhong Zhao, Filip Biljecki *

Urban streetscape perception dataset: Place Pulse 2.0

+ How well can machine learning be leveraged to describe and compare the exteriors of buildings in a detailed and scalable manner?

+ How do the human perceptions vary across cities that are constituted by different types of building exteriors?

id76_b233_mreOdcrBoV VoPTCccBY5rQ.png 533×362

id77_b237_XYtTbYZ5o9B BMFQ_yu6vvw.png 190×242

id76_b234_mreOdcrBoV VoPTCccBY5rQ.png 118×124

id77_b238_XYtTbYZ5o9 BBMFQ_yu6vvw.png 86×119

id76_b235_mreOdcrBoV VoPTCccBY5rQ.png 396×401

id77_b239_XYtTbYZ5o9 BBMFQ_yu6vvw.png 49×112

id77_b236_XYtTbYZ5o9 BBMFQ_yu6vvw.png 154×184

id77_b240_XYtTbYZ5o9 BBMFQ_yu6vvw.png 108×127

Building Facade ?

Research Framework

1. Dataset and Perception Models Establishment

2. Understanding of Urban Perception

Survey result

More pleasing

More pleasing

R.

Medium ordered score (> 3 & \leq 7)

San Francisco

terdam

Ams

Integration in DT/3D

WORKFLOW

STREET VIEW IMAGERY

How do you perceive the building?

Indicator	<u>Score</u>
Original	5.2
Pleasing	5.1
Ordered	4.7
Boring	3.4
Complex	5.1

INTEGRATION

Perception values 3D building attributes Extension Developing a CityJSON Extension to store data Validation Validating the new data and its extension according to the standard and schema Visualisation • 3D visualising perception attributes associated with each building

3D BUILDING MODEL

urban 人 analytics 心心 lab

ADOPTION

RESULTS

🔢 BuildingPart

NL.IMBAG.Pand.0363100012170202-0

Parents: 🔢

(3 Geometries ∨) 65 Attributes 🔨

morphology_cluster	0
perception_cluster	0_0
+perception-originality	{ "originality":
+perception-pleasing	{ "pleasing": 4.
+perception-ordered	{ "ordered": 3.7
+perception-boring	{ "boring": 5.22
+perception-complexity	{ "complexity":

Parent attributes

b3_bag_bag_overlap	0
b3_dak_type	slanted
b3_h_dak_50p	14.460000038
b3_h_dak_70p	15

4.278324889 } 4.76029276 }

🧨 Edit 🗙

.77965274 }

27181812 }

: 5.11609989 }

{
 CityJSON

33

urban 〉 analytic^r 心心 lab

ADOPTION

USE CASES

An attribute-based query of buildings

🧏 😪 🖓 🌈 🖏 🔛 🚺	///B3k-Z6
Layers	0 🗙
 example.city example.city 	
	Query Builder
Set provider filter on example.city Fields	Values
uid type parents children attribute.b3_bag_bag_overlap attribute.b3_dak_type attribute.b3_h_dak_50p attribute.b3_h_dak_70p attribute.b3_h_dak_max attribute.b3_h_dak_min attribute.b3_h_dak_min attribute.b3_h_maaiveld attribute.b3_kas_warenbuis	Sample
= < <= >=	> LIKE %
	•
"attribute.pleasing" > !	5 AND "attribute.year" < 1950
Help <u>T</u> est	<u>C</u> lear <u>Save</u> <u>L</u> oad
Q Type to locate (第K)	Coordinate 119773,487900 🗞 Scale

(urban (analytics 心心 lab

Incorporating Human Perception in Digital Twins

by Junjie Luo

(A). Photograph of an example location

A. Adding a new building

(B). Virtual counterpart in UDT

Geospatial technologies in urban farming Supporting the 30 by 30 vision — Singapore's 30% of nutritional needs by

Geospatial technologies in urban farming Supporting the 30 by 30 vision — Singapore's 30% of nutritional needs by 2030

Credit: Song Shuang

New 3D GIS use case: urban farming simulations

by Ankit Palliwal

Palliwal A, Song S, Tan HTW, Biljecki F (2021): 3D city models for urban farming site identification in buildings. Computers, $= 00.404 \Gamma 04$

puters, Environment and Urban Systems

3D city models for urban farming site identification in buildings

Ankit Palliwal^a, Shuang Song^b, Hugh Tiang Wah Tan^b, Filip Biljecki

ARTICLEINFO ABSTRACT Keywords: 3D GIS Food security OpenStreetMap Solar exposure Tropical climate

Over the years, farming in and around urban buildings, part ential buildings, has gained popularity in high-density and high 2018) This is nri

ional needs by 203 Situated at 1° North of equator, Singapore is an arable land-sca To reduce this heavy reliance on food imports and inline with SFA

nt of emotional, mental and physical well-being 2015), mitigation of the urban heat is

Credit: Song Shuang

achieve the '30 by 30' vision of the Singapore Food Agency (SF

, 2019) leaving it vulnerable

Conclusion and lessons learned

- Achieving a mature ('true') digital twin is difficult. Real-time/dynamic data and feedback loop remain the key obstacles
- Breaking silos is *de facto* 'a must' but challenging
- DT is well beyond 3D. Marriage of lots of data sources and types that are difficult to integrate and make sense of
 - Novel integration of thermal walks into urban digital twins to analyse and improve pedestrian thermal comfort and walkability in urban environments
 - Wearables, street view imagery, precise weather data, ...
- Unlike traditional 3D GIS, DTs entail more attention on stakeholders, organisational issues, business models, ...

Furthermore, we gratefully acknowledge the support of Chua Yun Xuan and Mario Frei for the Cozie administration and technical inquiries.

Acknowledgements: The research is supported by the NUS Resilience and Growth Postdoctoral Fellowship - Smart Cities and Urban Analytics project (funded by the Singapore) NRF), the Multi-scale Digital Twins for the Urban Environment: From Heartbeats to Cities project (funded by the Singapore Ministry of Education (MoE) Academic Research Fund Tier 1 grant), the Development of Integrated Multi-scale and Multiphysics Urban Microclimate Model project, and the Supporting Cooling NUS with BEAM initiative project (funded by the National University of Singapore and supported by the University Campus Infrastructure (UCI) and Office of the Deputy President - Research & Technology).

Urban Analytics Lab Singapore

Connect with us

https://ual.sg

@urbanalyticslab

Acknowledgements

Team and Alumni: Binyu Lei, Edgardo G Macatulad, Jiani Ouyang, Jintong Han, Koichi Ito, Marcel Ignatius, Mario Frei, Mathieu Bubert, Mengbi Ye, Winston Yap, Yujun Hou, Zeyu Wang, Zicheng Fan, Abraham Noah Wu, Ankit Palliwal, April Zhu, Balakrishnan Naveen Mani Kumar, Chen Shuting, Chen Wangyang, Damon Lim Wei Da, Ethan Chen Wai Hoong, Felix Hammer, Huang Zhiye, Junjie Luo, Kay Lee, Lawrence Chew, Leon Gaw, Li Jialin, Li Yangyang, Liang Xiucheng, Noée Szarka, Pang Hui En, Patrick Ahrend, Pengyuan Liu, Shiyue Zhong, Tianhong Zhao, Wang Jiaxuan, Wang Jing, Wang Shantong, Wang Xinru, Xiaofan Liang, Xinyu Chen, Yan Zhang, Yoong Shin Chow

Funding & support: NUS, Takenaka Corporation, NRF, FCL Global, AWS, Google

